Monday, 22 September 2014

Electrical Traction And Control LAB Manual For Diploma in Electrical Engineering 5th Semester FOR G.T.U

Hello Friends 

This are the practicals for Electrical Traction And Control 
Subject Code 3350907

For Diploma in electrical 
Download link will be given Below...


click Here for practical 1

Click Here For Practical 2

Click Here For Practical 4

Click Here For Practical 6

Click here for Practical 7

Click here For Practical 8

Click Here For Practical 9

Click Here for Practical 10









Blogger Widget

Sunday, 21 September 2014

TYPES OF BUS BAR SYSTEM

TYPES OF BUS BAR SYSTEM
1 Single Busbar System
Single busbar system is as shown below in figure 

Single Busbar System
a. Merits
1. Low Cost
2. Simple to Operate
3. Simple Protection
b. Demerits
1. Fault of bus or any circuit breaker results in shut down of entire substation.
2. Difficult to do any maintenance.
3. Bus cannot be extended without completely deenergizing substations.
c. Remarks
1. Used for distribution substations up to 33kV.
2. Not used for large substations.
3. Sectionalizing increases flexibility.

2 Main & Transfer Bus bar System
Main & Transfer Bus is as shown below in figure 

a. Merits
1. Low initial & ultimate cost
2. Any breaker can be taken out of service for maintenance.
3. Potential devices may be used on the main bus.
b. Demerits
1. Requires one extra breaker coupler.
2. Switching is somewhat complex when maintaining a breaker.
3. Fault of bus or any circuit breaker results in shutdown of entire substation.
c. Remarks
1. Used for 110kV substations where cost of duplicate bus bar system is not justified. 

3 Double Bus bar Single Breaker system
Double Bus Bar with Double Breaker is as shown below in figure 


a. Merits
1. High flexibility
2. Half of the feeders connected to each bus
b. Demerits
1. Extra bus-coupler circuit breaker necessary.
2. Bus protection scheme may cause loss of substation when it operates.
3. High exposure to bus fault.
4. Line breaker failure takes all circuits connected to the bus out of service.
5. Bus couplers failure takes entire substation out of service.      
c. Remarks
Most widely used for 66kV, 132kv, 220kV and important 11kv, 6.6kV, 3.3kV

Substations.

4 Double Bus bar with Double breaker System
 Double Bus Bar with Double breaker system is as shown below in figure 


a. Merits
1. Each has two associated breakers
2. Has flexibility in permitting feeder circuits to be connected to any bus
3. Any breaker can be taken out of service for maintenance.
4. High reliability
b. Demerits
1. Most expensive
2. Would lose half of the circuits for breaker fault if circuits are not connected to both the buses.
c. Remarks
1. Not used for usual EHV substations due to high cost.

2. Used only for very important, high power, EHV substations.

5 Double Main Bus & Transfer Busbar System
Double main bus & transfer bus system is as shown below in figure


a. Merits
1. Most flexible in operation
2. Highly reliable
3. Breaker failure on bus side breaker removes only one ckt. From service
4. All switching done with breakers
5. Simple operation, no isolator switching required
6. Either main bus can be taken out of service at any time for maintenance.
7. Bus fault does not remove any feeder from the service
b. Demerits
1. High cost due to three buses
c. Remarks

1. Preferred by some utilities for 400kV and 220kV important substations.

6 ONE & HALF BREAKER SCHEME
a. Merits
1. Flexible operation for breaker maintenance.
2. Any breaker can be removed from maintenance without interruption of load.
3. Requires 1 1/2 breaker per feeder.
4. Each circuit fed by two breakers.
5. All switching by breaker.
6. Selective tripping.
b. Demerits
1. One and half breakers per circuit, hence higher cost
2. Any breaker can be removed from maintenance without interruption of load.
c. Remarks
1. Used for 400kV & 220kV substations.
2. Preferred.

7 RING OR MESH ARRANGEMENT

a.      Merits
Bus bars gave some operational flexibility.
b.      Demerits
1. If fault occurs during bus maintenance, ring gets separated into two sections.
2. Auto-reclosing and protection complex.
3. Requires VT’s on all circuits because there is no definite voltage reference point.
4. Breaker failure during fault on one circuit causes loss of additional circuit because of breaker failure.
These VT’s may be required in all cases for synchronizing live line or voltage indication
c.       Remarks
 Most widely used for very large power stations having large no. of incoming and outgoing lines and high power transfer.

PLEASE GIVE YOUR FEEDBACK 
IN COMMENT SECTION ..
SO IT CAN HELP ME TO IMPROVE THIS BLOG......
Blogger Widget

Wednesday, 17 September 2014

A Bit of an Introduction about Geo-Thermal Energy

Introduction of Geo-Thermal Energy
Geothermal energy is energy extracted from heat stored in the earth. This geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. It has been used for space heating and bathing since ancient times, but is now known for both heating as well as for generating electricity.

Geothermal power is cost effective, reliable, and environmentally friendly, but has previously been geographically limited to areas near tectonic plate boundaries. Recent technological advances have significantly expanded the range and size of viable resources, especially for direct applications such as home heating.

Geo-thermal Potential

Geothermal energy has shown signs of considerable growth over the last few years. Global geothermal installed capacity (for electricity) has escalated from 7,972 MWe in 2000 to around 9,700 MWe in the year 2007 (generating about 0.3% of global electricity demand) and is expected to reach around 13,600 MWe by 2012.

The US continues to be the world leader in terms of total installed capacity of geothermal energy and the generation of electric power from geothermal energy.
By mid 2008, worldwide installed capacity of geothermal energy for electricity generation had crossed the 10 GW mark. Worldwide, about 30 GW of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications. If heat recovered by ground source heat pumps is included, the non-electric use of geothermal energy is estimated at more than 100 GWt (gigawatts of thermal power) and is used commercially in over 70 countries.
Geothermal (ground-source) heat pumps (GHPs) have become a major growth area of geothermal energy use in the United States, Canada and Europe. The number of GHPs has steadily increased over the past 10 years. By 2008, an estimated 800,000 equivalent 12 kW (3.4 ton) units have been installed in the United States and about 50,000 in Canada.

Geo-thermal Locations

Geothermal energy supplies more than 10,000 MW to 24 countries worldwide and now produces enough electricity to meet the needs of 60 million people. The Philippines, which generates 23% of its electricity from geothermal energy, is the world’s second biggest producer behind the U.S. Geothermal energy has helped developing countries such as Indonesia, the Philippines, Guatemala, Costa Rica, and Mexico. The benefits of geothermal projects can preserve the cleanliness of developing countries seeking energy and economic independence, and it can provide a local source of electricity in remote locations, thus raising the quality of life. 

Iceland is widely considered the success story of the geothermal community. The country of just over 300,000 people is now fully powered by renewable forms of energy, with 17% of electricity and 87% of heating needs provided by geothermal energy. Iceland has been expanding its geothermal power production largely to meet growing industrial and commercial energy demand. In 2004, Iceland was reported to have generated 1465 gigawatt-hours (GWh) from geothermal resources; geothermal production is reached 3000 GWh in 2009. 

According to some experts, the most likely value for the technical potential of geothermal resources suitable for electricity generation is 240 GWe (This is about 5% of total global installed capacity for electricity in 2008). Theoretical considerations, based on the conditions in Iceland and the USA, reveal that the magnitude of hidden resources is expected to be 5-10 times larger than the estimate of identified resources. If this is the case for other parts of the world, the upper limit for electricity generation from geothermal resources is in the range of 1-2 TWe.

Prominent countries worldwide with geothermal potential:
  • Russia 
  • Japan 
  • Eastern China 
  • Himalayan Geothermal Belt 
  • The Philippines 
  • Indonesia 
  • New Zealand 
  • Canada 
  • United States 
  • Mexico 
  • Central American Volcanic Belt 
  • Andean Volcanic Belt 
  • The Caribbean 
  • Iceland and other Atlantic Islands 
  • Northern Europe 
  • Eastern Europe 
  • Italy 
  • Eastern and Southern Mediterranean 
  • East Africa Rift System
Geothermal Energy - How it works
There are three main types of geothermal energy in use currently:
  • Direct Use Heating Systems these use hot water from springs or reservoirs near the earth’s surface.
  • Electricity from Geothermal Energy Electricity generation in power plants require water or steam at very high temperature. Geothermal power plants are generally built where geothermal reservoirs are located within a mile or two of the surface. Thus, these plants use the geothermal heat for generating steam that run a turbine to produce electricity.
  • Geothermal Heat Pumps – These heat pumps use stable temperatures under the ground to heat and cool buildings.
Applications of Geothermal Energy

Geothermal Electricity Production

Geothermal Electricity: This geothermal power plant generates electricity for the Imperial Valley in California.
This geothermal power plant generates electricity for the Imperial Valley in California. Credit: Warren Gretz

Most power plants need steam to generate electricity. The steam rotates a turbine that activates a generator, which produces electricity. Many power plants still use fossil fuels to boil water for steam. Geothermal power plants, however, use steam produced from reservoirs of hot water found a couple of miles or more below the Earth's surface. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle.
Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant, where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's a well-known geyser called Old Faithful. Since Yellowstone is protected from development, the only dry steam plants in the country are at The Geysers.
Flash steam power plants are the most common. They use geothermal reservoirs of water with temperatures greater than 360°F (182°C). This very hot water flows up through wells in the ground under its own pressure. As it flows upward, the pressure decreases and some of the hot water boils into steam. The steam is then separated from the water and used to power a turbine/generator. Any leftover water and condensed steam are injected back into the reservoir, making this a sustainable resource.

Binary cycle power plants operate on water at lower temperatures of about 225°-360°F (107°-182°C). These plants use the heat from the hot water to boil a working fluid, usually an organic compound with a low boiling point. The working fluid is vaporized in a heat exchanger and used to turn a turbine. The water is then injected back into the ground to be reheated. The water and the working fluid are kept separated during the whole process, so there are little or no air emissions.

Small-scale geothermal power plants (under 5 megawatts) have the potential for widespread application in rural areas, possibly even as distributed energy resources. Distributed energy resources refer to a variety of small, modular power-generating technologies that can be combined to improve the operation of the electricity delivery system.

In the United States, most geothermal reservoirs are located in the western states, Alaska, and Hawaii.

Geothermal Direct Use

Geothermal Direct Use: Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing.
Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing. Credit: Warren Gretz
When a person takes a hot bath, the heat from the water will usually warm up the entire bathroom. Geothermal reservoirs of hot water, which are found a couple of miles or more beneath the Earth's surface, can also be used to provide heat directly. This is called the direct use of geothermal energy.

Geothermal direct use dates back thousands of years, when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource.

In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through the well, and a mechanical system - piping, a heat exchanger, and controls - delivers the heat directly for its intended use. A disposal system then either injects the cooled water underground or disposes of it on the surface.

Geothermal hot water can be used for many applications that require heat. Its current uses include heating buildings (either individually or whole towns), raising plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes, such as pasteurizing milk. With some applications, researchers are exploring ways to effectively use the geothermal fluid for generating electricity as well.

In the United States, most geothermal reservoirs are located in the western states, Alaska, and Hawaii.


Indian Geo-thermal Energy Program


Potential

It has been estimated from geological, geochemical, shallow geophysical and shallow drilling data it is estimated that India has about 10000 MWe of geothermal power potential that can be harnessed for various purposes.[iv]
Rocks covered on the surface of India ranging in age from more than 4500 million years to the present day and distributed in different geographical units. The rocks comprise of Archean, Proterozoic, the marine and continental Palaeozoic, Mesozoic, Teritary, Quaternary etc., More than 300 hot spring locations have been identified by Geological survey of India (Thussu, 2000). The surface temperature of the hot springs ranges from 35 C to as much as 98 C. These hot springs have been grouped together and termed as different geothermal provinces based on their occurrence in specific geotectonic regions, geological and strutural regions such as occurrence in orogenic belt regions, structural grabens, deep fault zones, active volcanic regions etc., Different orogenic regions are – Himalayan geothermal province, Naga-Lushai geothermal province, Andaman-Nicobar Islands geothermal province and non-orogenic regions are – Cambay graben, Son-Narmada-Tapi graben, west coast, Damodar valley, Mahanadi valley, Godavari valley etc.

Potential Sites:
  •  Puga Valley (J&K)
  •  Tatapani (Chhattisgarh)
  •  Godavari Basin Manikaran (Himachal Pradesh)
  •  Bakreshwar (West Bengal)
  •  Tuwa (Gujarat)
  •  Unai (Maharashtra)
  •  Jalgaon (Maharashtra)


Thank you....
HOPE This information will help you to gain your knowledge about Geothermal Energy..
Feedback  are welcome in comment 
ADMIN.
Blogger Widget